Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei

假鼻疽伯克霍尔德菌 N 型 ATPase 转子环的分子结构

阅读:5
作者:Sarah Schulz, Martin Wilkes, Deryck J Mills, Werner Kühlbrandt, Thomas Meier

Abstract

The genome of the highly infectious bacterium Burkholderia pseudomallei harbors an atp operon that encodes an N-type rotary ATPase, in addition to an operon for a regular F-type rotary ATPase. The molecular architecture of N-type ATPases is unknown and their biochemical properties and cellular functions are largely unexplored. We studied the B. pseudomallei N1No-type ATPase and investigated the structure and ion specificity of its membrane-embedded c-ring rotor by single-particle electron cryo-microscopy. Of several amphiphilic compounds tested for solubilizing the complex, the choice of the low-density, low-CMC detergent LDAO was optimal in terms of map quality and resolution. The cryoEM map of the c-ring at 6.1 Å resolution reveals a heptadecameric oligomer with a molecular mass of ~141 kDa. Biochemical measurements indicate that the c17 ring is H+ specific, demonstrating that the ATPase is proton-coupled. The c17 ring stoichiometry results in a very high ion-to-ATP ratio of 5.7. We propose that this N-ATPase is a highly efficient proton pump that helps these melioidosis-causing bacteria to survive in the hostile, acidic environment of phagosomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。