Maize Tricin-Oligolignol Metabolites and Their Implications for Monocot Lignification

玉米 Tricin-Oligolignol 代谢物及其对单子叶植物木质化的影响

阅读:18
作者:Wu Lan, Kris Morreel, Fachuang Lu, Jorge Rencoret, José Carlos Del Río, Wannes Voorend, Wilfred Vermerris, Wout Boerjan, John Ralph

Abstract

Lignin is an abundant aromatic plant cell wall polymer consisting of phenylpropanoid units in which the aromatic rings display various degrees of methoxylation. Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as a true monomer in grass lignins. To elucidate the incorporation pathways of tricin into grass lignin, the metabolites of maize (Zea mays) were extracted from lignifying tissues and profiled using the recently developed 'candidate substrate product pair' algorithm applied to ultra-high-performance liquid chromatography and Fourier transform-ion cyclotron resonance-mass spectrometry. Twelve tricin-containing products (each with up to eight isomers), including those derived from the various monolignol acetate and p-coumarate conjugates, were observed and authenticated by comparisons with a set of synthetic tricin-oligolignol dimeric and trimeric compounds. The identification of such compounds helps establish that tricin is an important monomer in the lignification of monocots, acting as a nucleation site for starting lignin chains. The array of tricin-containing products provides further evidence for the combinatorial coupling model of general lignification and supports evolving paradigms for the unique nature of lignification in monocots.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。