A global view on quantitative proteomic and metabolic analysis of rat livers under different hypoxia protocols

不同缺氧方案下大鼠肝脏定量蛋白质组学和代谢分析的总体概况

阅读:5
作者:Jin Xu, Wen-Jie Chen, Han-Bing Hu, Zhi-Wei Xie, Dong-Ge Zhang, Jia Zhao, Jing Xiang, Qi-Yu Wei, Tawni Tidwell, Olivier Girard, Fu-Hai Ma, Zhao-Wei Li, Yan-Ming Ren

Abstract

Hypobaric hypoxia causes altitude sickness and significantly affects human health. As of now, focusing on rats different proteomic and metabolic changes exposed to different hypoxic times at extreme altitude is blank. Our study integrated in vivo experiments with tandem mass tag (TMT)- and gas chromatography time-of-flight (GC-TOF)-based proteomic and metabolomic assessments, respectively. Male Sprague-Dawley rats were exposed to long-term constant hypoxia for 40 days or short-term constant hypoxia for three days, and their responses were compared with those of a normal control group. Post-hypoxia, serum marker assays related to lipid metabolism revealed significant increases in the levels of low-density lipoprotein (LDL), triglycerides (TG), and total cholesterol (TC) in the liver. In contrast, high-density lipoprotein (HDL) levels were upregulated in the long-term constant hypoxia cohorts and were significantly reduced in the short-term constant hypoxia cohorts. Furthermore, metabolic pathway analysis indicated that glycerolipid and glycerophospholipid metabolisms were the most significantly affected pathways in long-term hypoxia group. Subsequently, RT-qPCR analyses were performed to corroborate the key regulatory elements, including macrophage galactose-type lectin (MGL) and Fatty Acid Desaturase 2 (FADS2). The results of this study provide new information for understanding the effects of different hypobaric hypoxia exposure protocols on protein expression and metabolism in low-altitude animals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。