Effect of Low Temperature on Content of Primary Metabolites in Two Wheat Genotypes Differing in Cold Tolerance

低温对两种耐寒性小麦基因型初级代谢产物含量的影响

阅读:6
作者:Alexander Deryabin, Kseniya Zhukova, Natalia Naraikina, Yuliya Venzhik

Abstract

The study of cold-tolerance mechanisms of wheat as a leading cereal crop is very relevant to science. Primary metabolites play an important role in the formation of increased cold tolerance. The aim of this research is to define changes in the content of primary metabolites (soluble proteins and sugars), growth, and photosynthetic apparatus of freezing-tolerant and cold-sustainable wheat (Triticum aestivum L.) genotypes under optimal conditions and after prolonged (7 days) exposure to low temperature (4 °C). In order to gain a deeper comprehension of the mechanisms behind wheat genotypes' adaptation to cold, we determined the expression levels of photosynthetic genes (RbcS, RbcL) and genes encoding cold-regulated proteins (Wcor726, CBF14). The results indicated different cold-adaptation strategies of freezing-tolerant and cold-sustainable wheat genotypes, with soluble proteins and sugars playing a significant role in this process. In plants of freezing-tolerant genotypes, the strategy of adaptation to low temperature was aimed at increasing the content of soluble proteins and modification of carbohydrate metabolism. The accumulation of sugars was not observed in wheat of cold-sustainable genotypes during chilling, but a high content of soluble proteins was maintained both under optimal conditions and after cold exposure. The adaptation strategies of wheat genotypes differing in cold tolerance were related to the expression of photosynthetic genes and genes encoding cold-regulated proteins. The data improve our knowledge of physiological and biochemical mechanisms of wheat cold adaptation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。