Conclusions
Our findings indicate that preoxygenation with 100% FiO2 induces stress in neuronal cells, axons, and glial cells, leading to an increase in neurodegenerative biomarkers. Optimizing preoxygenation strategies is crucial to reduce oxidative stress and improve neurological outcomes for surgical patients.
Methods
This prospective, randomized, controlled study included 52 patients undergoing elective laparoscopic cholecystectomy under general anesthesia. Patients were divided into two groups: Group I received standard preoxygenation (100% FiO2 for 3 min), while Group II underwent rapid preoxygenation (eight deep breaths over 30 s to 1 min). Hemodynamic parameters (SAP, DAP, MAP, and SpO2) and neurodegenerative biomarkers (pTau, S100B, NSE, NfL, GFAP) were measured after preoxygenation, after intubation, and at the end of surgery.
Results
Group I exhibited a significant increase in levels of pTau, S100B, NSE, and GFAP, indicating higher neuronal and glial cell stress compared to Group II (p < 0.001). No significant increase in NfL levels was observed in either group. Hemodynamic parameters (HR, SAP, DAP, MAP) were significantly higher during and after preoxygenation in Group I, suggesting an increased stress response. Group II showed lower levels of acute neurotoxicity and oxidative stress. Conclusions: Our findings indicate that preoxygenation with 100% FiO2 induces stress in neuronal cells, axons, and glial cells, leading to an increase in neurodegenerative biomarkers. Optimizing preoxygenation strategies is crucial to reduce oxidative stress and improve neurological outcomes for surgical patients.
