Glycoprotein 130 Antagonism Counteracts Metabolic and Inflammatory Alterations to Enhance Right Ventricle Function in Pulmonary Artery Banded Pigs

糖蛋白 130 拮抗作用可抵消代谢和炎症改变,从而增强肺动脉带猪的右心室功能

阅读:7
作者:Jenna B Mendelson, Jacob D Sternbach, Ryan A Moon, Lynn M Hartweck, Sophia R Clark, Walt Tollison, Matthew T Lahti, John P Carney, Todd Markowski, LeeAnn Higgins, Felipe Kazmirczak, Kurt W Prins

Background

Right ventricular dysfunction (RVD) is a risk factor for death in multiple cardiovascular diseases, but RV-enhancing therapies are lacking. Inhibition of glycoprotein-130 (GP130) signaling with the small molecule SC144 improves RV function in rodent RVD via anti-inflammatory and metabolic mechanisms. However, SC144's efficacy and molecular effects in a translational large animal model of RVD are unknown.

Conclusion

GP130 antagonism blunts elevated immune cell abundance, reduces pro-inflammatory gene transcription in macrophages and lymphocytes, rebalances autophagy and preserves fatty acid metabolism in cardiomyocytes, and restores endothelial cell and pericyte communication to improve RV function.

Methods

4-week-old castrated male pigs underwent pulmonary artery banding (PAB). After 3 weeks, PAB pigs were randomized into 2 groups (daily injections of SC144 [2.2 mg/kg, PAB-SC144, n=5] or vehicle [PAB-Veh, n=5] for 3 weeks). Five age-matched pigs served as controls. Cardiac MRI quantified RV size/function. Right heart catheterization evaluated hemodynamics. Single-nucleus RNA sequencing delineated cell-type specific changes between experimental groups. Electron microscopy evaluated RV mitochondrial morphology. Phosphoproteomics identified dysregulated RV kinases. Lipidomics and metabolomics quantified lipid species and metabolites in RV tissue. Quantitative proteomics examined RV mitochondrial protein regulation.

Results

SC144 significantly improved RV ejection fraction (Control: 60±4%, PAB-Veh: 22±10%, PAB-SC144: 37±6%) despite similar RV afterload. Single-nucleus RNA sequencing demonstrated PAB-Veh pigs had lower cardiomyocyte and higher macrophage/lymphocyte/pericyte/endothelial cell abundances as compared to control, and many of these changes were blunted by SC144. SC144 combatted the downregulation of cardiomyocyte metabolic genes induced by PAB. Kinome enrichment analysis suggested SC144 counteracted RV mTORC1 activation. Correspondingly, SC144 rebalanced RV autophagy pathway proteins and improved mitochondrial morphology. Integrated lipidomics, metabolomics, and proteomics analyses revealed SC144 restored fatty acid metabolism. Finally, CellChat analysis revealed SC144 restored pericyte-endothelial cell cross-talk.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。