Insulin hypersensitivity in mice lacking the V1b vasopressin receptor

缺乏 V1b 加压素受体的小鼠的胰岛素高敏感性

阅读:5
作者:Yoko Fujiwara, Masami Hiroyama, Atsushi Sanbe, Toshinori Aoyagi, Jun-Ichi Birumachi, Junji Yamauchi, Gozoh Tsujimoto, Akito Tanoue

Abstract

We have reported that [Arg(8)]-vasopressin-stimulated insulin release is blunted in islet cells isolated from V1b receptor-deficient (V1bR(-/-)) mice. In this study, we used V1bR(-/-) mice to examine the physiological role of the V1b receptor in regulating blood glucose levels in vivo, and we found that the fasting plasma glucose, insulin and glucagon levels were lower in V1bR(-/-) mice than in wild-type (V1bR(+/+)) mice. Next, we evaluated glucose tolerance by performing an intraperitoneal glucose tolerance test (GTT). The plasma glucose and insulin levels during the GTT were lower in V1bR(-/-) mice than in V1bR(+/+) mice. An insulin tolerance test (ITT) revealed that, after insulin administration, plasma glucose levels were lower in V1bR(-/-) mice than in V1bR(+/+) mice. In addition, a hyperinsulinaemic-euglycaemic clamp study showed that the glucose infusion rate was increased in V1bR(-/-) mice, indicating that insulin sensitivity was enhanced at the in vivo level in V1bR(-/-) mice. Furthermore, we found that the V1b receptor was expressed in white adipose tissue and that insulin-stimulated phosphorylation of Akt as an important signaling molecule was increased in adipocytes isolated from V1bR(-/-) mice. Thus, the blockade of the V1b receptor could result, at least in part, in enhanced insulin sensitivity by altering insulin signalling in adipocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。