Diurnal and circadian regulation of putative potassium channels in a leaf moving organ

叶运动器官中假定钾通道的昼夜调节

阅读:5
作者:Menachem Moshelion, Dirk Becker, Katrin Czempinski, Bernd Mueller-Roeber, Bernard Attali, Rainer Hedrich, Nava Moran

Abstract

In a search for potassium channels involved in light- and clock-regulated leaf movements, we cloned four putative K channel genes from the leaf-moving organs, pulvini, of the legume Samanea saman. The S. saman SPOCK1 is homologous to KCO1, an Arabidopsis two-pore-domain K channel, the S. saman SPORK1 is similar to SKOR and GORK, Arabidopsis outward-rectifying Shaker-like K channels, and the S. saman SPICK1 and SPICK2 are homologous to AKT2, a weakly-inward-rectifying Shaker-like Arabidopsis K channel. All four S. saman sequences possess the universal K-channel-specific pore signature, TXXTXGYG, strongly suggesting a role in transmembrane K(+) transport. The four S. saman genes had different expression patterns within four leaf parts: "extensor" and "flexor" (the motor tissues), the leaf blades (mainly mesophyll), and the vascular bundle ("rachis"). Based on northern blot analysis, their transcript level was correlated with the rhythmic leaf movements: (a) all four genes were regulated diurnally (Spick2, Spork1, and Spock1 in extensor and flexor, Spick1 in extensor and rachis); (b) Spork1 and Spock1 rhythms were inverted upon the inversion of the day-night cycle; and (c) in extensor and/or flexor, the expression of Spork1, Spick1, and Spick2 was also under a circadian control. These findings parallel the circadian rhythm shown to govern the resting membrane K(+) permeability in extensor and flexor protoplasts and the susceptibility of this permeability to light stimulation (Kim et al., 1993). Thus, Samanea pulvinar motor cells are the first described system combining light and circadian regulation of K channels at the level of transcript and membrane transport.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。