Development of a Novel Marine-Derived Tricomposite Biomaterial for Bone Regeneration

开发用于骨再生的新型海洋衍生三基复合生物材料

阅读:7
作者:Bilal Aslam, Aleksandra Augustyniak, Susan A Clarke, Helena McMahon

Abstract

Bone tissue engineering is a promising treatment for bone loss that requires a combination of porous scaffold and osteogenic cells. The aim of this study was to evaluate and develop a tricomposite, biomimetic scaffold consisting of marine-derived biomaterials, namely, chitosan and fucoidan with hydroxyapatite (HA). The effects of chitosan, fucoidan and HA individually and in combination on the proliferation and differentiation of human mesenchymal stem cells (MSCs) were investigated. According to the SEM results, the tricomposite scaffold had a uniform porous structure, which is a key requirement for cell migration, proliferation and vascularisation. The presence of HA and fucoidan in the chitosan tricomposite scaffold was confirmed using FTIR, which showed a slight decrease in porosity and an increase in the density of the tricomposite scaffold compared to other formulations. Fucoidan was found to inhibit cell proliferation at higher concentrations and at earlier time points when applied as a single treatment, but this effect was lost at later time points. Similar results were observed with HA alone. However, both HA and fucoidan increased MSC mineralisation as measured by calcium deposition. Differentiation was significantly enhanced in MSCs cultured on the tricomposite, with increased alkaline phosphatase activity on days 17 and 25. In conclusion, the tricomposite is biocompatible, promotes osteogenesis, and has the structural and compositional properties required of a scaffold for bone tissue engineering. This biomaterial could provide an effective treatment for small bone defects as an alternative to autografts or be the basis for cell attachment and differentiation in ex vivo bone tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。