Evaluation of Lidocaine and Metabolite Pharmacokinetics in Hyaluronic Acid Injection

透明质酸注射液中利多卡因及代谢物药代动力学评价

阅读:4
作者:Ju Hee Kim, Dong Wook Kang, Go-Wun Choi, Sang Bok Lee, Seongjin Lee, Hea-Young Cho

Abstract

Lidocaine-incorporated hyaluronic acid injection (LHA) is considered a promising way to increase patient compliance. Various reviews and analyses have been conducted to verify that the addition of lidocaine had no effect on the product quality of hyaluronic acid injections. However, possible pharmacokinetic (PK) alterations of lidocaine and its active metabolites, monoethylglycylxylidide (MEGX) and glycylxylidide (GX), in hyaluronic acid injection have not been studied so far. Thus, the objective of this study was to evaluate lidocaine and its metabolite PK after 0.3% lidocaine solution or LHA injection and to investigate any changes in PK profiles of lidocaine and its active metabolites. To do this, a novel bio-analytical method for simultaneous determination of lidocaine, MEGX, and GX in rat plasma was developed and validated. Then, plasma concentrations of lidocaine and its active metabolites MEGX and GX following subcutaneous (SC) injection of 0.3% lidocaine solution or LHA with 0.3-1% lidocaine in male Sprague-Dawley rats were successfully determined. The obtained data were used to develop a parent-metabolite pharmacokinetic (PK) model for LHA injection. The half-life, dose-normalized Cmax, and AUCinf of lidocaine after SC injection of lidocaine solution and LHA did not show statistically significant difference. The PK characteristics of lidocaine after LHA administration were best captured using a two-compartment model with combined first-order and transit absorption and its clearance described with Michaelis-Menten and first-order elimination kinetics. Two one-compartment models were consecutively added to the parent model for the metabolites. In conclusion, the incorporation of lidocaine in hyaluronic acid filler injection did not alter the chemical's pharmacokinetic characteristics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。