Translesion synthesis of 6-nitrochrysene-derived 2'-deoxyadenosine adduct in human cells

6-硝基衍生的2'-脱氧腺苷加合物在人体细胞中的跨损伤合成

阅读:4
作者:Brent V Powell, Jan Henric T Bacurio, Ashis K Basu

Abstract

6-Nitrochrysene (6-NC) is a potent mutagen in bacteria and carcinogenic in animals. It is the most potent carcinogen ever tested in newborn mouse assay. DNA lesions resulting from 6-NC modification are likely to induce mutations if they are not removed by cellular defense pathways prior to DNA replication. Earlier studies showed that 6-NC-derived C8-2'-deoxyadenosine adduct, N-(dA-8-yl)-6-AC, is very slowly repaired in human cells. In this study, we have investigated replication of N-(dA-8-yl)-6-AC in human embryonic kidney (HEK 293T) cells and the roles of translesion synthesis (TLS) DNA polymerases in bypassing it. Replication of a plasmid containing a single site-specific N-(dA-8-yl)-6-AC adduct in HEK 293 T cells showed that human DNA polymerase (hPol) η and hPol κ played important roles in bypassing the adduct, since TLS efficiency was reduced to 26 % in the absence of these two polymerases compared to 83 % in polymerase-competent HEK 293T cells. The progeny from HEK 293T cells provided 12.7 % mutants predominantly containing A→T transversions. Mutation frequency (MF) was increased to 17.8 % in hPol η-deficient cells, whereas it was decreased to 3.3 % and 3.9 % when the adduct containing plasmid was replicated in hPol κ- and hPol ζ-deficient cells, respectively. The greatest reduction in MF by more than 90 % (to MF 1.2 %) was observed in hPol ζ-knockout cells in which hPol κ was knocked down. Taken together, these results suggest that hPol κ and hPol ζ are involved in the error-prone TLS of N-(dA-8-yl)-6-AC, while hPol η performs error-free bypass.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。