Exogenous Hydrogen Sulfide Mitigates Oxidative Stress and Mitochondrial Damages Induced by Polystyrene Microplastics in Osteoblastic Cells of Mice

外源性硫化氢减轻小鼠成骨细胞中聚苯乙烯微塑料引起的氧化应激和线粒体损伤

阅读:12
作者:Qingping Shi, Feihong Chen, Yuanyi Feng, Yangxi Zheng, Ximei Zhi, Wen Wu

Abstract

Polystyrene microplastics (mic-PS) have become harmful pollutants that attracted substantial attention about their potential toxicity. Hydrogen sulfide (H2S) is the third reported endogenous gas transmitter with protective functions on numerous physiologic responses. Nevertheless, the roles for mic-PS on skeletal systems in mammals and the protective effects of exogenous H2S are still indistinct. Here, the proliferation of MC3T3-E1 cell was analyzed by CCK8. Gene changes between the control and mic-PS treatment groups were analyzed by RNA-seq. The mRNA expression of bone morphogenetic protein 4 (Bmp4), alpha cardiac muscle 1 (Actc1), and myosin heavy polypeptide 6 (Myh6) was analyzed by QPCR. ROS level was analyzed by 2',7'-dichlorofluorescein (DCFH-DA). The mitochondrial membrane potential (MMP) was analyzed by Rh123. Our results indicated after exposure for 24 h, 100 mg/L mic-PS induced considerable cytotoxicity in the osteoblastic cells of mice. There were 147 differentially expressed genes (DEGs) including 103 downregulated genes and 44 upregulated genes in the mic-PS-treated group versus the control. The related signaling pathways were oxidative stress, energy metabolism, bone formation, and osteoblast differentiation. The results indicate that exogenous H2S may relieve mic-PS toxicity by altering Bmp4, Actc1, and Myh6 mRNA expressions associated with mitochondrial oxidative stress. Taken together, this study demonstrated that the bone toxicity effects of mic-PS along with exogenous H2S have protective function in mic-PS-mediated oxidative damage and mitochondrial dysfunction in osteoblastic cells of mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。