Potential of Cheese-Associated Lactic Acid Bacteria to Metabolize Citrate and Produce Organic Acids and Acetoin

奶酪相关乳酸菌代谢柠檬酸并产生有机酸和乙偶姻的潜力

阅读:4
作者:Luana Faria Silva, Tássila Nakata Sunakozawa, Diego Alves Monteiro, Tiago Casella, Ana Carolina Conti, Svetoslav Dimitrov Todorov, Ana Lúcia Barretto Penna

Abstract

Lactic acid bacteria (LAB) are pivotal in shaping the technological, sensory, and safety aspects of dairy products. The evaluation of proteolytic activity, citrate utilization, milk pH reduction, and the production of organic compounds, acetoin, and diacetyl by cheese associated LAB strains was carried out, followed by Principal Component Analysis (PCA). Citrate utilization was observed in all Leuconostoc (Le.) mesenteroides, Le. citreum, Lactococcus (Lc.) lactis, Lc. garvieae, and Limosilactobacillus (Lm.) fermentum strains, and in some Lacticaseibacillus (Lact.) casei strains. Most strains exhibited proteolytic activity, reduced pH, and generated organic compounds. Multivariate PCA revealed Le. mesenteroides as a prolific producer of acetic, lactic, formic, and pyruvic acids and acetoin at 30 °C. Enterococcus sp. was distinguished from Lact. casei based on acetic, formic, and pyruvic acid production, while Lact. casei primarily produced lactic acid at 37 °C. At 42 °C, Lactobacillus (L.) helveticus and some L. delbrueckii subsp. bulgaricus strains excelled in acetoin production, whereas L. delbrueckii subsp. bulgaricus and Streptococcus (S.) thermophilus strains primarily produced lactic acid. Lm. fermentum stood out with its production of acetic, formic, and pyruvic acids. Overall, cheese-associated LAB strains exhibited diverse metabolic capabilities which contribute to desirable aroma, flavor, and safety of dairy products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。