Systematic Screening Study for the Selection of Proper Stabilizers to Produce Physically Stable Canagliflozin Nanosuspension by Wet Milling Method

通过湿磨法生产物理稳定的卡格列净纳米混悬液的系统筛选研究

阅读:4
作者:Yagmur Pirincci Tok, Burcu Mesut, Sevgi Güngör, Ali Osman Sarıkaya, Emre Erol Aldeniz, Udaya Dude, Yıldız Özsoy

Abstract

One of the crucial approaches to managing the low solubility and weak bioavailability of drugs is via nanocrystal technology. Through this technology, drug particles have an increased solubility and a faster dissolution rate due to high surface free energy, which requires an appropriate stabilizer(s) to prevent instabilities during the manufacturing process and storage of the nanosuspension. This study aimed to establish a scientific predictive system for properly selecting stabilizers or to reduce the attempts on a trial-and-error basis in the wet-milling method. In total, 42 experiments were performed to examine the effect of critical material attributes on the wettability of the drug, the saturation solubility in the stabilizer solutions or combinations thereof and the dynamic viscosity of stabilizer solutions. All data were evaluated by Minitab 19® and an optimization study was performed. The optimized formulation at a certain concentration of stabilizer combination was ground by Dyno Mill® with 0.3 mm beads for one hour. The optimized nanosuspension with a particle size of 204.5 nm was obtained in short milling time and offered 3.05- and 3.51 times better dissolution rates than the marketed drug product (Invokana® 100 mg) in pH 4.5 and pH 6.8 as non-sink conditions, respectively. The formulation was monitored for three months at room temperature and 4 °C. The parameters were 261.30 nm, 0.163, -14.1 mV and 261.50 nm, 0.216 and -17.8 mV, respectively. It was concluded that this approach might indicate the appropriate selection of stabilizers for the wet-milling process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。