Effects of β-Nicotinamide Mononucleotide, Berberine, and Cordycepin on Lipid Droplet Content and Developmental Ability of Vitrified Bovine Oocytes

β-烟酰胺单核苷酸、小檗碱和虫草素对玻璃化冷冻牛卵母细胞脂滴含量及发育能力的影响

阅读:5
作者:Xi Xu, Baigao Yang, Hang Zhang, Xiaoyi Feng, Haisheng Hao, Weihua Du, Huabin Zhu, Adnan Khan, Muhammad Zahoor Khan, Peipei Zhang, Xueming Zhao

Abstract

Oocyte vitrification is crucial for livestock reproduction, germplasm conservation, and human-assisted reproduction, but the overabundance of lipids is highly detrimental to oocyte development. It is necessary to reduce the lipid droplet content of oocytes before cryopreservation. This study analyzed the impact of β-nicotinamide mononucleotide (NMN), berberine (BER), or cordycepin (COR) on various aspects of bovine oocytes, including lipid droplet content and the expression levels of genes related to lipid synthesis in bovine oocytes, development ability, reactive oxygen species (ROS), apoptosis, and the expression levels of genes associated with endoplasmic reticulum (ER) stress, and mitochondrial function in vitrified bovine oocytes. The results of our study indicated that 1 μM NMN, 2.5 μM BER, and 1 μM COR were effective in reducing the lipid droplet content and suppressing the expression levels of genes involved in lipid synthesis in bovine oocytes. Our findings showed that the vitrified bovine oocytes treated with 1 μM of NMN had a significantly higher survival rate and better development ability compared to the other vitrified groups. Additionally, 1 μM NMN, 2.5 μM BER, and 1 μM COR decreased the levels of ROS and apoptosis, decreased the mRNA expression levels of genes involved in ER stress and mitochondrial fission but increased the mRNA expression levels of genes associated with mitochondrial fusion in the vitrified bovine oocytes. Our study results suggested that 1 μM NMN, 2.5 μM BER, and 1 μM COR effectively decreased the lipid droplet content and enhanced the development ability of vitrified bovine oocytes by lowering ROS levels, reducing ER stress, regulating mitochondrial function, and inhibiting apoptosis. Furthermore, the results showed that 1 μM NMN was more effective than 2.5 μM BER and 1 μM COR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。