Influence of exposure to coarse, fine and ultrafine urban particulate matter and their biological constituents on neural biomarkers in a randomized controlled crossover study

一项随机对照交叉研究中,接触粗、细和超细城市颗粒物及其生物成分对神经生物标志物的影响

阅读:7
作者:Ling Liu, Bruce Urch, Mieczyslaw Szyszkowicz, Mary Speck, Karen Leingartner, Robin Shutt, Guillaume Pelletier, Diane R Gold, James A Scott, Jeffrey R Brook, Peter S Thorne, Frances S Silverman

Background

Epidemiological studies have reported associations between air pollution and neuro-psychological conditions. Biological mechanisms behind these findings are still not clear. Objectives: We examined changes in blood and urinary neural biomarkers following exposure to concentrated ambient coarse, fine and ultrafine particles.

Conclusion

Ambient coarse particulate matter and its biological constituents may influence neural biomarker levels that reflect perturbations of blood-brain barrier integrity and systemic stress response.

Methods

Fifty healthy non-smoking volunteers, mean age 28years, were exposed to coarse (2.5-10μm, mean 213μg/m3) and fine (0.15-2.5μm, mean 238μg/m3) concentrated ambient particles (CAPs), and filtered ambient and/or medical air. Twenty-five participants were exposed to ultrafine CAP (mean size 59.6nm, range 47.0-69.8nm), mean (136μg/m3) and filtered medical air. Exposures lasted 130min, separated by ≥2weeks, and the biological constituents endotoxin and β-1,3-d-glucan of each particle size fraction were measured. Blood and urine samples were collected pre-exposure, and 1-hour and 21-hour post-exposure to determine neural biomarker levels. Mixed-model regressions assessed associations between exposures and changes in biomarker levels.

Results

Results were expressed as percent change from daily pre-exposure biomarker levels. Exposure to coarse CAP was significantly associated with increased urinary levels of the stress-related biomarkers vanillylmandelic acid (VMA) and cortisol when compared with exposure to filtered medical air [20% (95% confidence interval: 1.0%, 38%) and 64% (0.2%, 127%), respectively] 21hours post-exposure. However exposure to coarse CAP was significantly associated with decreases in blood cortisol [-26.0% (-42.4%, -9.6%) and -22.4% (-43.7%, -1.1%) at 1h and 21h post-exposure, respectively]. Biological molecules present in coarse CAP were significantly associated with blood biomarkers indicative of blood brain barrier integrity. Endotoxin content was significantly associated with increased blood ubiquitin C-terminal hydrolase L1 [UCHL1, 11% (5.3%, 16%) per ln(ng/m3+1)] 1-hour post-exposure, while β-1,3-d-glucan was significantly associated with increased blood S100B [6.3% (3.2%, 9.4%) per ln(ng/m3+1)], as well as UCHL1 [3.1% (0.4%, 5.9%) per ln(ng/m3+1)], one-hour post-exposure. Fine CAP was marginally associated with increased blood UCHL1 when compared with exposure to filtered medical air [17.7% (-1.7%, 37.2%), p=0.07] 21hours post-exposure. Ultrafine CAP was not significantly associated with changes in any blood and urinary neural biomarkers examined.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。