APEX1 Polymorphisms Affect Acute Myeloid Leukemia Risk, and Its Expression Is Involved in Cell Proliferation and Differentiation

APEX1基因多态性影响急性髓系白血病风险,其表达与细胞增殖和分化有关

阅读:10
作者:Nanami Gotoh, Tsukasa Oda, Yuya Kitamura, Natsuki Shiraishi, Runa Aoyagi, Ayane Omori, Kota Yanagisawa, Minami Iida, Yua Itoi, Hikaru Negishi, Ikuko Matsumura, Tetsuhiro Kasamatsu, Eiji Miyauchi, Nobuo Sasaki, Satoru Takada, Akihiko Yokohama, Hiroshi Handa, Hirokazu Murakami, Takayuki Saitoh

Conclusions

In the GSE48558 dataset, AML cells and normal CD34+ cells expressed APEX1 at higher levels than did granulocytes (p < 0.01). Functional experiments revealed that APEX1 knockdown led to a reduction in AML cell proliferation. These findings indicated that APEX1 polymorphisms were a potential risk factor for AML and highlighted the important role of APEX1 in regulating AML cell differentiation and proliferation.

Methods

In total, 106 patients with AML and 191 healthy controls were included in the study, wherein polymorphisms in four BER genes (APEX1, MUTYH, OGG1, and XRCC1) were examined.

Results

Notably, the APEX1-656 T>G polymorphism exhibited a significant association with AML risk in the recessive (TT vs. TG + GG) (p = 0.046) and co-dominant models (TT vs. GG) (p = 0.02). Assessing APEX1 expression levels, APEX1 expression was elevated in the bone marrow of patients with AML compared with that in controls (p = 0.02). Subsequently, we compared the percentages of CD34+ cells between the APEX1 high or low expression groups, revealing a significant difference (high vs. low = 29.9% vs. 11.5%, p = 0.01). Additionally, we observed reduced APEX1 expression in HL60 cells differentiated with all-trans retinoic acid (p < 0.001). We hypothesized that APEX1 expression could correlate with stemness and analyzed its expression in stem and differentiated cells. Conclusions: In the GSE48558 dataset, AML cells and normal CD34+ cells expressed APEX1 at higher levels than did granulocytes (p < 0.01). Functional experiments revealed that APEX1 knockdown led to a reduction in AML cell proliferation. These findings indicated that APEX1 polymorphisms were a potential risk factor for AML and highlighted the important role of APEX1 in regulating AML cell differentiation and proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。