Pathological matrix stiffness promotes cardiac fibroblast differentiation through the POU2F1 signaling pathway

病理基质僵硬通过POU2F1信号通路促进心脏成纤维细胞分化

阅读:4
作者:Mingzhe Li, Jimin Wu, Guomin Hu, Yao Song, Jing Shen, Junzhou Xin, Zijian Li, Wei Liu, Erdan Dong, Ming Xu, Youyi Zhang, Han Xiao

Abstract

Cardiac fibroblast (CF) differentiation into myofibroblasts is a crucial cause of cardiac fibrosis, which increases in the extracellular matrix (ECM) stiffness. The increased stiffness further promotes CF differentiation and fibrosis. However, the molecular mechanism is still unclear. We used bioinformatics analysis to find new candidates that regulate the genes involved in stiffness-induced CF differentiation, and found that there were binding sites for the POU-domain transcription factor, POU2F1 (also known as Oct-1), in the promoters of 50 differentially expressed genes (DEGs) in CFs on the stiffer substrate. Immunofluorescent staining and Western blotting revealed that pathological stiffness upregulated POU2F1 expression and increased CF differentiation on polyacrylamide hydrogel substrates and in mouse myocardial infarction tissue. A chromatin immunoprecipitation assay showed that POU2F1 bound to the promoters of fibrosis repressors IL1R2, CD69, and TGIF2. The expression of these fibrosis repressors was inhibited on pathological substrate stiffness. Knockdown of POU2F1 upregulated these repressors and attenuated CF differentiation on pathological substrate stiffness (35 kPa). Whereas, overexpression of POU2F1 downregulated these repressors and enhanced CF differentiation. In conclusion, pathological stiffness upregulates the transcription factor POU2F1 to promote CF differentiation by inhibiting fibrosis repressors. Our work elucidated the crosstalk between CF differentiation and the ECM and provided a potential target for cardiac fibrosis treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。