Light regulates chlorophyll biosynthesis via ELIP1 during the storage of Chinese cabbage

光照通过ELIP1调控大白菜贮藏过程中叶绿素的生物合成

阅读:5
作者:Tuoyi Wang, Sijia Liu, Shaonan Tian, Tianyi Ma, Wei Wang

Abstract

Chlorophyll loss is a major problem during green vegetable storage. However, the molecular mechanism is still unclear. In this study, a 21 days of storage experiments showed chlorophyll content was higher in light-stored Chinese cabbage (Brassica chinensis L.) leaves than those in dark-stored samples. Transcriptome analyses were performed on these samples to determine the effects of light. Among 311 differentially expressed genes (DEGs), early light-induced protein 1 (ELIP1) was identified as the main control gene for chlorophyll synthesis. Tissues and subcellular localization indicated that ELIP1 was localized in the nucleus. Motifs structure analyses, chromatin immunoprecipitation (ChIP) assays, luciferase reporter assays, and overexpression experiments demonstrated that ELIP1 regulated the expressions of genomes uncoupled 4 (GUN4), Glutamyl-tRNA reductase family protein (HEMA1), and Mg-protoporphyrin IX methyltransferase (CHLM) by binding to G-box-like motifs and affected chlorophyll biosynthesis during the storage of Chinese cabbage. It is a possible common tetrapyrrole biosynthetic pathway for chlorophylls, hemes, and bilin pigments in photosynthetic organisms. Our research also revealed that white light can be used as a regulatory factor to improve the storage ability and extent shelf life of Chinese cabbage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。