Enhancement of Skin Wound Healing by rhEGF-Loaded Carboxymethyl Chitosan Nanoparticles

rhEGF 负载羧甲基壳聚糖纳米粒子促进皮肤伤口愈合

阅读:4
作者:Pei Zhang, Chenguang Liu

Abstract

The self-assembly of hydrophobically modified polymers has become a research hotspot due to its wide application in the biomedical field. Recombinant human epidermal growth factors (rhEGFs) are molecules that are able to enhance wound healing; however, they have a short half-life and require sustained action to enhance their mitogenic effect on epithelial cells. Here, we proposed a new delivery system to avoid the inhibition of rhEGF by various enzymes, thus improving its bioavailability and sustained release. The amphiphilic polymer was composed of conjugated linoleic acid (CLA) and carboxymethyl chitosan (CMCS), which were further characterized by fourier transformed infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR). Then, the self-assembly behavior of CLA-CMCS (CC) polymer in water was observed in which the particle size of CC decreased from 196 to 155 nm with the degree of CLA substitution increasing. The nanoparticles were loaded with rhEGF and the maximum rhEGF loading efficiency (LE) of CC3 nanoparticles was 82.43 ± 3.14%. Furthermore, CC nanoparticles (NPs) exhibited no cytotoxicity for L929 cells, and cell proliferation activity was well preserved after rhEGF loading to CC-NPs and was comparable to that of free rhEGF. Topically applied rhEGF:CC-NPs significantly accelerated the wound-closure rate in full thickness, which was most probably due to its sustained release and enhanced skin permeation. In conclusion, carboxymethyl chitosan-based nanoparticles were constructed and showed good cytocompatibility. Moreover, these findings also demonstrated the therapeutic potential of rhEGF:CC-NPs as a topical wound-healing drug carrier.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。