Pivotal role of miR-448 in the development of ROS-induced cardiomyopathy

miR-448 在 ROS 诱发的心肌病发展中发挥的关键作用

阅读:7
作者:Sergii Kyrychenko, Viktoriia Kyrychenko, Myriam A Badr, Yoshiyuki Ikeda, Junichi Sadoshima, Natalia Shirokova

Aims

Nicotinamide adenine dinucleotide oxidases (NOXs) are important contributors to cellular oxidative stress in the cardiovascular system. The NOX2 isoform is upregulated in numerous disorders, including dystrophic cardiomyopathy, where it drives the progression of the disease. However, mechanisms underlying NOX2 overexpression are still unknown. We investigated the role of microRNAs (miRs) in the regulation of NOX2 expression.

Conclusions

Our studies suggest that downregulation of miR-448-3p leads to the increase in the expression of Ncf1 gene and p47(phox) protein, as well as to the substantial increase in NOX2-derived ROS production. Cellular oxidative stress subsequently triggers events that finally culminate in cardiac tissue damage and development of cardiomyopathy.

Results

Duchenne muscular dystrophy (DMD) was used as a model of cardiomyopathy. After screening with miRNA target prediction databases and following qRT-PCR analysis, we found drastic downregulation of miR-448-3p in hearts of mdx mice, an animal model of DMD. The downregulation correlated with overexpression of the Ncf1 gene, encoding the NOX2 regulatory subunit p47(phox). Specificity of Ncf1 targeting by miR-448-3p was validated by luciferase reporter assay. Silencing of miR-448-3p in wild-type mice had a dramatic effect on cellular and functional properties of cardiac muscle as assessed by western blotting, qRT-PCR, confocal imaging, echocardiography, and histology. Acute treatment of mice with LNA-miR-448 inhibitors led to increased Ncf1 expression, abnormally elevated reactive oxygen species (ROS) production and exacerbated Ca(2+) signalling in cardiomyocytes, reminiscent of features previously observed in dystrophic cardiac cells. In addition, chronic inhibition of miR-448-3p resulted in dilated cardiomyopathy and arrhythmia, hallmarks of dystrophic cardiomyopathy. Conclusions: Our studies suggest that downregulation of miR-448-3p leads to the increase in the expression of Ncf1 gene and p47(phox) protein, as well as to the substantial increase in NOX2-derived ROS production. Cellular oxidative stress subsequently triggers events that finally culminate in cardiac tissue damage and development of cardiomyopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。