Oxidized {alpha}1-antitrypsin stimulates the release of monocyte chemotactic protein-1 from lung epithelial cells: potential role in emphysema

氧化α1-抗胰蛋白酶刺激肺上皮细胞释放单核细胞趋化蛋白-1:在肺气肿中的潜在作用

阅读:7
作者:Zhenjun Li, Sam Alam, Jicun Wang, Caroline S Sandstrom, Sabina Janciauskiene, Ravi Mahadeva

Abstract

alpha(1)-Antitrypsin (AT) is a major elastase inhibitor within the lung. Oxidation of critical methionine residues in AT generates oxidized AT (Ox-AT), which has a greatly diminished ability to inhibit neutrophil elastase. This process may contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD) by creating a functional deficiency of AT permitting lung destruction. We show here that Ox-AT promotes release of human monocyte chemoattractant protein-1 (MCP-1) and IL-8 from human lung type epithelial cells (A549) and normal human bronchial epithelial (NHBE) cells. Native, cleaved, polymeric AT and secretory leukoproteinase inhibitor (SLPI) and oxidized conformations of cleaved, polymeric AT and SLPI did not have any significant effect on MCP-1 and IL-8 secretion. These findings were supported by the fact that instillation of Ox-AT into murine lungs resulted in an increase in JE (mouse MCP-1) and increased macrophage numbers in the bronchoalveolar lavage fluid. The effect of Ox-AT was dependent on NF-kappaB and activator protein-1 (AP-1)/JNK. These findings have important implications. They demonstrate that the oxidation of methionines in AT by oxidants released by cigarette smoke or inflammatory cells not only reduces the antielastase lung protection, but also converts AT into a proinflammatory stimulus. Ox-AT generated in the airway interacts directly with epithelial cells to release chemokines IL-8 and MCP-1, which in turn attracts macrophages and neutrophils into the airways. The release of oxidants by these inflammatory cells could oxidize AT, perpetuating the cycle and potentially contributing to the pathogenesis of COPD. Furthermore, these data demonstrate that molecules such as oxidants, antiproteinases, and chemokines, rather than act independently, are likely to interact to cause emphysema.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。