CRISPR/Cas9 Delivery Mediated with Hydroxyl-Rich Nanosystems for Gene Editing in Aorta

利用富含羟基的纳米系统介导 CRISPR/Cas9 递送,实现主动脉基因编辑

阅读:5
作者:Xiaoping Zhang, Chen Xu, Shijuan Gao, Ping Li, Yu Kong, Tiantian Li, Yulin Li, Fu-Jian Xu, Jie Du

Abstract

A CRISPR/Cas9 system has emerged as a powerful tool for gene editing to treat genetic mutation related diseases. Due to the complete endothelial barrier, effective delivery of the CRISPR/Cas9 system to vasculatures remains a challenge for in vivo gene editing of genetic vascular diseases especially in aorta. Herein, it is reported that CHO-PGEA (cholesterol (CHO)-terminated ethanolamine-aminated poly(glycidyl methacrylate)) with rich hydroxyl groups can deliver a plasmid based pCas9-sgFbn1 system for the knockout of exon 10 in Fbn1 gene. This is the first report of a polycation-mediated CRISPR/Cas9 system for gene editing in aorta of adult mice. CHO-PGEA/pCas9-sgFbn1 nanosystems can effectively contribute to the knockout of exon 10 in Fbn1 in vascular smooth muscle cells in vitro, which leads to the change of the phosphorylation of Smad2/3 and the increased expression of two downstream signals of Fbn1: Mmp-2 and Ctgf. For in vivo application, the aortic enrichment of CHO-PGEA/Cas9-sgFbn1 is achieved by administering a pressor dose of angiotensin II (Ang II). The effects of the pCas9-sgFbn1 system targeting Fbn1 demonstrate an increase in the expression of Mmp-2 and Ctgf in aorta. Thus, the combination of CHO-PGEA/pCas9-sgFbn1 nanosystems with Ang II infusion can provide the possibility for in vivo gene editing in aorta.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。