Osterix-mCherry Expression Allows for Early Bone Detection in a Calvarial Defect Model

Osterix-mCherry 表达可在颅骨缺损模型中实现早期骨检测

阅读:5
作者:Sara E Strecker, Shimon Unterman, Lyndon F Charles, Dmitry Pivovarchick, Peter F Maye, Elazer R Edelman, Natalie Artzi

Abstract

The process of new bone formation following trauma requires the temporal recruitment of cells to the site, including mesenchymal stem cells, preosteoblasts, and osteoblasts, the latter of which deposit minerals. Hence, bone repair, a process that is assessed by the extent of mineralization within the defect, can take months before it is possible to determine if a treatment is successful. Here, a fluorescently tagged Osterix, an early key gene in the bone formation cascade, is used as a predictive measure of bone formation. Using a calvarial defect model in mice, the ability to noninvasively track the Osterix transcription factor in an Osterix-mCherry mouse model is evaluated as a measure for bone formation following treatment with recombinant human Bone-Morphogenetic-Protein 2 (rhBMP-2). Two distinct delivery materials are utilized, an injectable nanocomposite hydrogel and a collagen sponge, that afford distinct release kinetics and it is found that cherry-fluorescent protein can be detected as early as 2 weeks following treatment. Osterix intensity correlates with subsequent bone formation and hence can serve as a rapid screening tool for osteogenic drugs or for the evaluation and optimization of delivery platforms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。