Gut metabolite S-equol ameliorates hyperexcitability in entorhinal cortex neurons following Theiler murine encephalomyelitis virus-induced acute seizures

肠道代谢物 S-雌马酚可改善泰勒鼠脑脊髓炎病毒诱发的急性癫痫发作后内嗅皮质神经元的兴奋性

阅读:5
作者:Allison Gallucci, Dipan C Patel, K'Ehleyr Thai, Jonathan Trinh, Rosalie Gude, Devika Shukla, Susan L Campbell

Methods

We infected C57BL/6J mice with TMEV and monitored the development of acute behavioral seizures 0-7 days postinfection (dpi). Fecal samples were collected at 5-7 dpi and processed for 16S sequencing, and bioinformatics were performed with QIIME2. Finally, we conducted whole-cell patch-clamp recordings in cortical neurons to investigate the effect of exogenous S-equol on cell intrinsic properties and neuronal hyperexcitability.

Objective

A growing body of evidence indicates a potential role for the gut-brain axis as a novel therapeutic target in treating seizures. The present study sought to characterize the gut microbiome in Theiler murine encephalomyelitis virus (TMEV)-induced seizures, and to evaluate the effect of microbial metabolite S-equol on neuronal physiology as well as TMEV-induced neuronal hyperexcitability ex vivo.

Results

We demonstrated that gut microbiota diversity is significantly altered in TMEV-infected mice at 5-7 dpi, exhibiting separation in beta diversity in TMEV-infected mice dependent on seizure phenotype, and lower abundance of genus Allobaculum in TMEV-infected mice regardless of seizure phenotype. In contrast, we identified specific loss of S-equol-producing genus Adlercreutzia as a microbial hallmark of seizure phenotype following TMEV infection. Electrophysiological recordings indicated that exogenous S-equol alters cortical neuronal physiology. We found that entorhinal cortex neurons are hyperexcitable in TMEV-infected mice, and exogenous application of microbial-derived S-equol ameliorated this TMEV-induced hyperexcitability. Significance: Our study presents the first evidence of microbial-derived metabolite S-equol as a potential mechanism for alteration of TMEV-induced neuronal excitability. These findings provide new insight for the novel role of S-equol and the gut-brain axis in epilepsy treatment.

Significance

Our study presents the first evidence of microbial-derived metabolite S-equol as a potential mechanism for alteration of TMEV-induced neuronal excitability. These findings provide new insight for the novel role of S-equol and the gut-brain axis in epilepsy treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。