Function of DHX33 in promoting Warburg effect via regulation of glycolytic genes

DHX33 通过调控糖酵解基因促进 Warburg 效应

阅读:8
作者:Cheng Peng, Sheng-Tao Hou, Chu-Xia Deng, Yandong Zhang

Abstract

Cancer cells metabolize glucose through glycolysis to promote cell proliferation even with abundant oxygen. Multiple glycolysis genes are deregulated during cancer development. Despite intensive effort, the cause of their deregulation remains incompletely understood. Here in this study, we discovered that DHX33 plays a critical role in Warburg effect of cancer cells. DHX33 deficient cells have markedly reduced glycolysis activity. Through RNA-seq analysis, we found multiple critical genes involved in Warburg effect were downregulated after DHX33 deficiency. These genes include lactate dehydrogenase A (LDHA), pyruvate dehydrogenase kinase 1 (PDK1), pyruvate kinase muscle isoform 2 (PKM2), enolase 1 (ENO1), ENO2, hexokinase 1/2, among others. With LDHA, PDK1, and PKM2 as examples, we further revealed that DHX33 altered the epigenetic marks around the promoter of glycolytic genes. This is through DHX33 in complex with Gadd45a-a growth arrest and DNA damage protein. DHX33 is required for the loading of Gadd45a and DNA dioxygenase Tet1 at the promoter sites, which resulted in active DNA demethylation and enhanced histone H4 acetylation. We conclude that DHX33 changes local epigenetic marks in favor of the transcription of glycolysis genes to promote cancer cell proliferation. Our study highlights the significance of RNA helicase DHX33 in Warburg effect and cancer therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。