10-Gingerol Targets Lipid Rafts Associated PI3K/Akt Signaling in Radio-Resistant Triple Negative Breast Cancer Cells

10-姜辣素靶向抗放射三阴性乳腺癌细胞中的脂筏相关 PI3K/Akt 信号传导

阅读:5
作者:Meran Keshawa Ediriweera, Jeong Yong Moon, Yen Thi-Kim Nguyen, Somi Kim Cho

Abstract

10-gingerol is a major phenolic lipid found in the rhizomes of ginger (Zingiber officinale). Being amphiphilic in nature, phenolic lipids have the ability to incorporate into cell membranes and modulate membrane properties. The purpose of the present study was to evaluate the effects of 10-gingerol on lipid raft/membrane raft modulation in radio-resistant triple negative breast cancer (MDA-MB-231/IR) cells. The effects of 10-gingerol on MDA-MB-231/IR cells' proliferation, clonogenic growth, migration, and invasion were assayed using MTT, colony formation, cell migration, and invasion assays, respectively. Sucrose density gradient centrifugation was used to extract lipid rafts. Western blotting and immunofluorescence were employed to assess the effects of 10-gingerol on lipid raft/membrane raft modulation and lipid rafts-associated PI3K/Akt signaling. Cholesterol measurements were carried out using a commercially available kit. 10-gingerol suppressed the proliferation, migration, invasion, and induced apoptosis through targeting the PI3K/Akt signaling pathway in MDA-MB-231/IR cells. Moreover, 10-gingerol was found to modulate the lipid rafts of MDA-MB-231/IR cells and attenuate the key PI3K/Akt signaling components in lipid rafts. The cholesterol content of the lipid rafts and rafts-resident Akt signaling were also affected by exposure to 10-gingerol. The results of the present study highlight rafts-associated PI3K/Akt signaling as a new target of 10-gingerol in MDA-MB-231/IR cells, thus rationalizing a new rafts-mediated treatment approach for radio-resistant triple negative breast cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。