Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction

通过联合研究方法揭示肿瘤表位免疫原性的关键参数,从而改进新抗原预测

阅读:2
作者:Daniel K Wells ,Marit M van Buuren ,Kristen K Dang ,Vanessa M Hubbard-Lucey ,Kathleen C F Sheehan ,Katie M Campbell ,Andrew Lamb ,Jeffrey P Ward ,John Sidney ,Ana B Blazquez ,Andrew J Rech ,Jesse M Zaretsky ,Begonya Comin-Anduix ,Alphonsus H C Ng ,William Chour ,Thomas V Yu ,Hira Rizvi ,Jia M Chen ,Patrice Manning ,Gabriela M Steiner ,Xengie C Doan ,Justin Guinney ,Adam Kolom ,Cheryl Selinsky ,Antoni Ribas ,Matthew D Hellmann ,Nir Hacohen ,Alessandro Sette ,James R Heath ,Nina Bhardwaj ,Fred Ramsdell ,Robert D Schreiber ,Ton N Schumacher ,Pia Kvistborg ,Nadine A Defranoux

Abstract

Many approaches to identify therapeutically relevant neoantigens couple tumor sequencing with bioinformatic algorithms and inferred rules of tumor epitope immunogenicity. However, there are no reference data to compare these approaches, and the parameters governing tumor epitope immunogenicity remain unclear. Here, we assembled a global consortium wherein each participant predicted immunogenic epitopes from shared tumor sequencing data. 608 epitopes were subsequently assessed for T cell binding in patient-matched samples. By integrating peptide features associated with presentation and recognition, we developed a model of tumor epitope immunogenicity that filtered out 98% of non-immunogenic peptides with a precision above 0.70. Pipelines prioritizing model features had superior performance, and pipeline alterations leveraging them improved prediction performance. These findings were validated in an independent cohort of 310 epitopes prioritized from tumor sequencing data and assessed for T cell binding. This data resource enables identification of parameters underlying effective anti-tumor immunity and is available to the research community.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。