UV and Visible Light-Driven Production of Hydroxyl Radicals by Reduced Forms of N, F, and P Codoped Titanium Dioxide

紫外光和可见光驱动 N、F、P 共掺杂二氧化钛还原产生羟基自由基

阅读:5
作者:A M Abdullah, Miguel Á Gracia-Pinilla, Suresh C Pillai, Kevin O'Shea

Abstract

The photocatalytic activities of reduced titanium dioxide (TiO2) materials have been investigated by measuring their ability to produce hydroxyl radicals under UV and visible light irradiation. Degussa P25 TiO2 was doped with nitrogen (N), fluorine (F), and/or phosphorus (P) and then subjected to surface modification employing a thermo-physicochemical process in the presence of reducing agent sodium borohydride (NaBH4). The reduced TiO2 materials were characterized by a number of X-ray, spectroscopic and imaging methods. Surface doping of TiO2 was employed to modulate the band gap energies into the visible wavelength region for better overlap with the solar spectrum. Hydroxyl radical generation, central to TiO2 photocatalytic water purification applications, was quantitated using coumarin as a trap under UV and visible light irradiation of the reduced TiO2 materials. At 350 nm irradiation, the yield of hydroxyl radicals generated by the reduced forms of TiO2 was nearly 90% of hydroxyl radicals generated by the Degussa P25 TiO2. Hydroxyl radical generation by these reduced forms of TiO2 was also observed under visible light irradiation (419 and 450 nm). These results demonstrated that simple surface modification of doped TiO2 can lead to visible light activity, which is important for more economical solar-driven applications of TiO2 photocatalysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。