Kidney-targeted baicalin-lysozyme conjugate ameliorates renal fibrosis in rats with diabetic nephropathy induced by streptozotocin

肾脏靶向黄芩苷-溶菌酶结合物改善链脲佐菌素诱发的糖尿病肾病大鼠肾脏纤维化

阅读:7
作者:Xiao-Peng Zheng, Qing Nie, Jing Feng, Xiao-Yan Fan, Yue-Lei Jin, Guang Chen, Ji-Wei Du

Background

Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, and is the most important cause of death for diabetic patients. Baicalin (BAI) has anti-oxidative, anti-inflammatory and anti-apoptotic activities, which play a role in attenuating insulin resistance and protecting the kidney. Moreover, cell-specific targeting of renal tubular cells is an approach to enhance drug accumulation in the kidney.

Conclusions

Our data support the traditional use of S. baicalensis as an important anti-DN traditional chinese medicine (TCM), and BAI, above all BAI-LZM, is a promising source for the identification of molecules with anti-DN effects.

Methods

Forty-five Sprague-Dawley rats were divided into four groups. A diabetes model was created using streptozotocin (STZ) intraperitoneally injection. The four groups included: Control group (n = 10), DN (n = 15), BAI treatment (BAI; n = 10) and BAI-LZM treatment (BAI-LZM; n = 10) groups. In the current study, the renoprotection and anti-fibrotic effects of BAI-lysozyme (LZM) conjugate were further investigated in rats with DN induced by STZ compared with BAI treatment alone.

Results

The results suggest that BAI-LZM better ameliorates renal impairment, metabolic disorder and renal fibrosis than BAI alone in rats with DN, and the potential regulatory mechanism likely involves inhibiting inflammation via the nuclear factor-κB signaling pathway, inhibiting extracellular matrix accumulation via the transforming growth factor-β/Smad3 pathway and regulating cell proliferation via the insulin-like growth factor (IGF)-1/IGF-1 receptor/p38 Mitogen-activated protein kinase (MAPK) pathway. BAI and the kidney-targeted BAI-LZM can utilize the body's cytoprotective pathways to reactivate autophagy (as indicated by the autophagy markers mechanistic target of rapamycin and sirtuin 1 to ameliorate DN outcomes. Conclusions: Our data support the traditional use of S. baicalensis as an important anti-DN traditional chinese medicine (TCM), and BAI, above all BAI-LZM, is a promising source for the identification of molecules with anti-DN effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。