Dehydroepiandrosterone upregulates soluble guanylate cyclase and inhibits hypoxic pulmonary hypertension

脱氢表雄酮上调可溶性鸟苷酸环化酶并抑制缺氧性肺动脉高压

阅读:5
作者:Masahiko Oka, Vijaya Karoor, Noriyuki Homma, Tetsutaro Nagaoka, Eiko Sakao, Scott M Golembeski, Jennifer Limbird, Masatoshi Imamura, Sarah A Gebb, Karen A Fagan, Ivan F McMurtry

Conclusion

These results indicate that the protective effect of dehydroepiandrosterone against hypoxic pulmonary hypertension may involve upregulation of pulmonary artery soluble guanylate cyclase protein expression and augmented pulmonary artery vasodilator responsiveness to nitric oxide.

Objective

It has been reported that dehydroepiandrosterone is a pulmonary vasodilator and inhibits chronic hypoxia-induced pulmonary hypertension. Additionally, dehydroepiandrosterone has been shown to improve systemic vascular endothelial function. Thus, we hypothesized that chronic treatment with dehydroepiandrosterone would attenuate hypoxic pulmonary hypertension by enhancing pulmonary artery endothelial function.

Results

Rats were randomly assigned to five groups. Three groups received food containing 0, 0.3, or 1% dehydroepiandrosterone during a 3-wk-exposure to simulated high altitude (HA). The other 2 groups were kept at Denver's low altitude (LA) and received food containing 0 or 1% dehydroepiandrosterone. Dehydroepiandrosterone dose-dependently inhibited hypoxic pulmonary hypertension (mean pulmonary artery pressures after treatment with 0, 0.3, and 1% dehydroepiandrosterone=45+/-5, 33+/-2*, and 25+/-1*# mmHg, respectively. *P<0.05 vs. 0% and # vs. 0.3%). Dehydroepiandrosterone (1%, 3 wks) treatment started after rats had been exposed to 3-wk hypoxia also effectively reversed established hypoxic pulmonary hypertension. Pulmonary artery rings isolated from both LA and HA rats treated with 1% dehydroepiandrosterone showed enhanced relaxations to acetylcholine and sodium nitroprusside, but not to 8-bromo-cGMP. In the pulmonary artery tissue from dehydroepiandrosterone-treated LA and HA rats, soluble guanylate cyclase, but not endothelial nitric oxide synthase, protein levels were increased.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。