The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo

内源性肽阿扑素能有效改善心脏收缩力并减少体内心脏负荷

阅读:5
作者:Euan A Ashley, Jennifer Powers, Mary Chen, Ramendra Kundu, Tom Finsterbach, Anthony Caffarelli, Alicia Deng, Jens Eichhorn, Raina Mahajan, Rani Agrawal, Joan Greve, Robert Robbins, Andrew J Patterson, Daniel Bernstein, Thomas Quertermous

Conclusions

Apelin reduces left ventricular preload and afterload and increases contractile reserve without evidence of hypertrophy. These results associate apelin with a positive hemodynamic profile and suggest it as an attractive target for pharmacotherapy in the setting of heart failure.

Methods

We investigated the functional relevance of this peptide using ECG and respiration gated magnetic resonance imaging, conductance catheter pressure-volume hemodynamic measurements, and echocardiography in vivo. In addition, we carried out histology and immunohistochemistry to assess cardiac hypertrophy and to localize apelin and APJ in the adult and embryonic mouse heart.

Objective

The endogenous peptide apelin is differentially regulated in cardiovascular disease but the nature of its role in cardiac function remains unclear.

Results

Intraperitoneal injection of apelin (300 microg/kg) resulted in a decrease in left ventricular end diastolic area (pre: 0.122+/-0.007; post: 0.104+/-0.005 cm(2), p=0.006) and an increase in heart rate (pre: 537+/-20; post: 559+/-19 beats per minute, p=0.03). Hemodynamic measurements revealed a marked increase in ventricular elastance (pre: 3.7+/-0.9; post: 6.5+/-1.4 mm Hg/RVU, p=0.018) and preload recruitable stroke work (pre: 27.4+/-8.0; post: 51.8+/-3.1, p=0.059) with little change in diastolic parameters following acute infusion of apelin. Chronic infusion (2 mg/kg/day) resulted in significant increases in the velocity of circumferential shortening (baseline: 5.36+/-0.401; 14 days: 6.85+/-0.358 circ/s, p=0.049) and cardiac output (baseline: 0.142+/-0.019; 14 days: 0.25+/-0.019 l/min, p=0.001) as determined by 15 MHz echocardiography. Post-mortem corrected heart weights were not different between apelin and saline groups (p=0.5) and histology revealed no evidence of cellular hypertrophy in the apelin group (nuclei per unit area, p=0.9). Immunohistochemistry studies revealed APJ staining of myocardial cells in all regions of the adult mouse heart. Antibody staining, as well as quantitative real time polymerase chain reaction identified expression of both APJ and apelin in embryonic myocardium as early as embryonic day 13.5. Conclusions: Apelin reduces left ventricular preload and afterload and increases contractile reserve without evidence of hypertrophy. These results associate apelin with a positive hemodynamic profile and suggest it as an attractive target for pharmacotherapy in the setting of heart failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。