In vitro and in vivo inhibitory effects of Carica papaya seed on α-amylase and α-glucosidase enzymes

番木瓜籽对 α-淀粉酶和 α-葡萄糖苷酶的体外和体内抑制作用

阅读:5
作者:Reuben Agada, Wurochekke Abdullahi Usman, Sarkiyayi Shehu, Dluya Thagariki

Abstract

The present study was aimed to investigate the in vitro and in vivo inhibitory effects of Carica papaya seeds on α-amylase and α-glucosidase enzymes, as this is known to be an antidiabetic mechanism. Analysis of the extracts of the seeds for phytochemicals revealed the presence of a significant amount of saponins, alkaloids, flavonoids, phenols, terpenoids, and steroids. The seed extracts of Carica papaya exhibited good antioxidant capacity using 2, 2-diphenyl-1-picryl hydroxyl (DPPH), thiobarbituric reactive substance (TBARS) and ferric reducing antioxidant power (FRAP) method. The results of the inhibitory studies of the extracts revealed that the hexane extract followed by the ethyl acetate extract was the most potent inhibitor of α-amylase and α-glucosidase enzyme when compared to other extracts using their IC50 values. In the animal study, different doses (250, 500 and 1000 mg/kg/body weight) of the extracts of Carica papaya seed were administered orally for 120 min, to normal and streptozotocin-induced diabetic rats, and were compared with acarbose 100 mg/kg/body weight and control group for the effect on postprandial hyperglycemia. The extract of ethyl acetate (at doses of 250, 500 and 1000 mg/kg/body weight) significantly reduced postprandial glucose levels in these animals. The characterization of hexane and ethyl acetate extracts by GC-MS analysis revealed 20 bioactive compounds while the FTIR analysis confirmed the presence of this functional groups: -C=C, -C-Cl, -C-O, -O-H, -CH, -C=O, -C=C=C, -N=C=S, -O=C=O and -N-H in Carica papaya seed extracts. It was concluded that the inhibition of α-amylase and α-glucosidase enzymes and the prevention of oxidative stress in postprandial hyperglycemia could be some of the possible mechanisms by which they exert their anti-diabetic properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。