Copper abolishes the beta-sheet secondary structure of preformed amyloid fibrils of amyloid-beta(42)

铜可以消除淀粉样β蛋白原纤维的β折叠二级结构(42)

阅读:9
作者:Emily House, Matthew Mold, Joanna Collingwood, Alex Baldwin, Steven Goodwin, Christopher Exley

Abstract

The observation of the co-deposition of metals and amyloid-beta(42) (Abeta(42)) in brain tissue in Alzheimer's disease prompted myriad investigations into the role played by metals in the precipitation of this peptide. Copper is bound by monomeric Abeta(12) and upon precipitation of the copper-peptide complex thereby prevents Abeta(42) from adopting a beta-sheet secondary structure. Copper is also bound by beta-sheet conformers of Abeta(42), and herein we have investigated how this interaction affects the conformation of the precipitated peptide. Copper significantly reduced the thioflavin T fluorescence of aged, fibrillar Abeta(42) with, for example, a 20-fold excess of the metal resulting in a ca 90% reduction in thioflavin T fluorescence. Transmission electron microscopy showed that copper significantly reduced the quantities of amyloid fibrils while Congo red staining and polarized light demonstrated a copper-induced abolition of apple-green birefringence. Microscopy under cross-polarized light also revealed the first observation of spherulites of Abeta(42). The size and appearance of these amyloid structures were found to be very similar to spherulites identified in Alzheimer's disease tissue. The combined results of these complementary methods strongly suggested that copper abolished the beta-sheet secondary structure of pre-formed, aged amyloid fibrils of Abeta(42). Copper may protect against the presence of beta-sheets of Abeta(42) in vivo, and its binding by fibrillar Abeta(42) could have implications for Alzheimer's disease therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。