Salidroside Reduces High-Glucose-Induced Podocyte Apoptosis and Oxidative Stress via Upregulating Heme Oxygenase-1 (HO-1) Expression

红景天苷通过上调血红素加氧酶-1 (HO-1) 表达减轻高糖诱导的足细胞凋亡和氧化应激

阅读:9
作者:Hua Lu, Ying Li, Tao Zhang, Maodong Liu, Yanqing Chi, Shuxia Liu, Yonghong Shi

Abstract

BACKGROUND Hyperglycemia is one of the most dangerous factors causing diabetic nephropathy. Salidroside is considered to have the effects of reducing oxidative stress damage and improving cell viability. This study was performed to investigate whether and how salidroside reduces high-glucose (HG)-induced apoptosis in mouse podocytes. MATERIAL AND METHODS We examined whether salidroside could decrease HG-induced podocyte oxidative stress and podocyte apoptosis in vitro. The potential signaling pathways were also investigated. Podocytes (immortalized mouse epithelial cells) were treated with normal glucose (5.5 mM) as control or HG (30 mM), and then exposed to salidroside treatment. RESULTS HG enhanced the generation of intracellular reactive oxygen species (ROS) and apoptosis in podocytes. Salidroside reduced HG-induced apoptosis-related consequences via promoting HO-1 expression. Salidroside increased the expression level of phosphorylated Akt (p-Akt) and phosphorylated ILK (p-ILK), p-JNK, and p-ERK and localization of Nrf-2. JNK inhibitor and ILK inhibitor decreased HO-1 expression to different degrees. Moreover, specific siRNAs of ILK, Nrf-2, and HO-1, and inhibitors of HO-1 and ILK significantly increased ROS generation and Caspase9/3 expression in the presence of salidroside and HG. CONCLUSIONS The results suggest that salidroside reduces HG-induced ROS generation and apoptosis and improves podocytes viability by upregulating HO-1 expression. ILK/Akt, JNK, ERK1/2, p38 MAPK, and Nrf-2 are involved in salidroside-decreased podocyte apoptosis in HG condition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。