A material-based platform to modulate fibronectin activity and focal adhesion assembly

一种调节纤连蛋白活性和粘着斑组装的材料型平台

阅读:4
作者:Frankie A Vanterpool, Marco Cantini, F Philipp Seib, Manuel Salmerón-Sánchez

Abstract

We present a detailed characterization of fibronectin (FN) adsorption and cell adhesion on poly(ethyl acrylate) (PEA) and poly(methyl acrylate) (PMA), two polymers with very similar physicochemical properties and chemical structure, which differ in one single methyl group in the lateral chain of the polymer. The globular solution conformation of FN was retained following adsorption onto PMA, whereas spontaneous organization of FN into protein (nano) networks occurred on PEA. This distinct distribution of FN at the material interface promoted a different availability, measured via monoclonal antibody binding, of two domains that facilitated integrin binding to FN: FNIII10 (RGD sequence) and FNIII9 (PHSRN synergy sequence). The enhanced exposure of the synergy domain on PEA compared to PMA triggered different focal adhesion assemblies: L929 fibroblasts showed a higher fraction of smaller focal plaques on PMA (40%) than on PEA (20%). Blocking experiments with monoclonal antibodies against FNIII10 (HFN7.1) and FNIII9 (mAb1937) confirmed the ability of these polymeric substrates to modulate FN conformation. Overall, we propose a simple and versatile material platform that can be used to tune the presentation of a main extracellular matrix protein (FN) to cells, for applications than span from tissue engineering to disease biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。