Normalizing and Correcting Variable and Complex LC-MS Metabolomic Data with the R Package pseudoDrift

使用 R 包 pseudoDrift 对可变且复杂的 LC-MS 代谢组数据进行归一化和校正

阅读:5
作者:Jonas Rodriguez, Lina Gomez-Cano, Erich Grotewold, Natalia de Leon

Abstract

In biological research domains, liquid chromatography-mass spectroscopy (LC-MS) has prevailed as the preferred technique for generating high quality metabolomic data. However, even with advanced instrumentation and established data acquisition protocols, technical errors are still routinely encountered and can pose a significant challenge to unveiling biologically relevant information. In large-scale studies, signal drift and batch effects are how technical errors are most commonly manifested. We developed pseudoDrift, an R package with capabilities for data simulation and outlier detection, and a new training and testing approach that is implemented to capture and to optionally correct for technical errors in LC-MS metabolomic data. Using data simulation, we demonstrate here that our approach performs equally as well as existing methods and offers increased flexibility to the researcher. As part of our study, we generated a targeted LC-MS dataset that profiled 33 phenolic compounds from seedling stem tissue in 602 genetically diverse non-transgenic maize inbred lines. This dataset provides a unique opportunity to investigate the dynamics of specialized metabolism in plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。