Electronic cigarette menthol flavoring is associated with increased inhaled micro and sub-micron particles and worse lung function in combustion cigarette smokers

电子烟薄荷味与燃烧型香烟吸烟者吸入的微米和亚微米颗粒增加以及肺功能恶化有关

阅读:6
作者:Divay Chandra #, Rachel F Bogdanoff #, Russell P Bowler, Kambez H Benam

Abstract

Flavored electronic cigarettes (ECs) present a serious health challenge globally. Currently, it is unknown whether the addition of highly popular menthol flavoring to e-liquid is associated with changes in the number of aerosolized particles generated or altered lung function. Here, we first performed preclinical studies using our novel robotic platform Human Vaping Mimetic Real-Time Particle Analyzer (HUMITIPAA). HUMITIPAA generates fresh aerosols for any desired EC in a very controlled and user-definable manner and utilizes an optical sensing system to quantitate and analyze sub-micron and microparticles from every puff over the course of vaping session in real-time while emulating clinically relevant breathing mechanics and vaping topography. We discovered that addition of menthol flavoring to freshly prepared e-liquid base propylene glycol-vegetable glycerin leads to enhanced particle counts in all tested size fractions, similar to the effect of adding vitamin E acetate to e-liquid we previously reported. Similarly, we found that menthol vs. non-menthol (tobacco) flavored pods from commercially available ECs leads to generation of significantly higher quantities of 1-10 µm particles upon inhalation. We then retrospectively analyzed data from the COPDGene study and identified an association between the use of menthol flavored ECs and reduced FEV1% predicted and FEV1/FVC independent of age, gender, race, pack-years of smoking, and use of nicotine or cannabis-containing vaping products. Our results reveal an association between enhanced inhaled particle due to menthol addition to ECs and worse lung function indices. Detailed causal relation remains to be demonstrated in future large-scale prospective clinical studies. Importantly, here we demonstrate utility of the HUMITIPAA as a predictive enabling technology to identify inhalation toxicological potential of emerging ECs as the chemical formulation of e-liquid gets modified.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。