GNG2 inhibits brain metastases from colorectal cancer via PI3K/AKT/mTOR signaling pathway

GNG2 通过 PI3K/AKT/mTOR 信号通路抑制结直肠癌脑转移

阅读:10
作者:Chenhua Luo, ZhiMing Xiao, WenLong Yang

Abstract

G-protein gamma subunit 2 (GNG2) plays a vital role in various cellular processes, yet its specific function in colorectal cancer (CRC), particularly in highly invasive cases and brain metastasis, remains unclear. This study identifies GNG2 as a key regulator in metastatic colorectal cancer (mCRC) through bioinformatics analysis and experimental validation. Functional enrichment analyses reveal that GNG2 is related to the PI3K/AKT/mTOR signaling pathway and cell cycle regulation. These findings were further confirmed by in vitro and in vivo experiments. The overexpression of GNG2 significantly induced G0/G1 arrest and further inhibited the PI3K/AKT/mTOR axis in CRC cell lines, including suppressed proliferation, migration, and invasion and metastasis ability. In vivo studies using an orthotopic xenograft model demonstrated that GNG2 overexpression reduced brain metastasis and extended overall survival in mice. Immunohistochemistry and multiplex immunofluorescence confirmed the association between GNG2 overexpression, the PI3K/AKT/mTOR signaling pathway, and G0/G1 arrest. Our study suggests that GNG2 contributes to tumor suppression in CRC, particularly in preventing brain metastasis, and could serve as a promising biomarker and treatment target for mCRC, offering fresh insights into the molecular processes driving cancer progression and metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。