High bioavailability of bisphenol A from sublingual exposure

舌下含服双酚 A 具有较高的生物利用度

阅读:2
作者:Véronique Gayrard, Marlène Z Lacroix, Séverine H Collet, Catherine Viguié, Alain Bousquet-Melou, Pierre-Louis Toutain, Nicole Picard-Hagen

Background

Bisphenol A (BPA) risk assessment is currently hindered by the rejection of reported higher-than-expected plasma BPA concentrations in humans after oral ingestion. These are deemed incompatible with the almost complete hepatic first-pass metabolism of BPA into its inactive glucurono-conjugated form, BPA glucuronide (BPAG). Objectives: Using dogs as a valid model, we compared plasma concentrations of BPA over a 24-hr period after intravenous, orogastric, and sublingual administration in order to establish the absolute bioavailability of BPA administered sublingually and to compare it with oral bioavailability.

Conclusions

Our findings demonstrate that BPA can be efficiently and very rapidly absorbed through the oral mucosa after sublingual exposure. This efficient systemic entry route of BPA may lead to far higher BPA internal exposures than known for BPA absorption from the gastrointestinal tract.

Methods

Six dogs were sublingually administered BPA at 0.05 mg/kg and 5 mg/kg. We compared the time course of plasma BPA concentrations with that obtained in the same dogs after intravenous administration of the same BPA doses and after a 20-mg/kg BPA dose administrated by orogastric gavage.

Results

The data indicated that the systemic bioavailability of BPA deposited sublingually was high (70-90%) and that BPA transmucosal absorption from the oral cavity led to much higher BPA internal exposure than obtained for BPA absorption from the gastrointestinal tract. The concentration ratio of BPAG to BPA in plasma was approximately 100-fold lower following sublingual administration than after orogastric dosing, distinguishing the two pathways of absorption. Conclusions: Our findings demonstrate that BPA can be efficiently and very rapidly absorbed through the oral mucosa after sublingual exposure. This efficient systemic entry route of BPA may lead to far higher BPA internal exposures than known for BPA absorption from the gastrointestinal tract.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。