Investigation of Solvent Hydron Exchange in the Reaction Catalyzed by the Antibiotic Resistance Protein Cfr

抗生素耐药蛋白Cfr催化反应中溶剂氢交换的研究

阅读:6
作者:Matthew R Bauerle, Tyler L Grove, Squire J Booker

Abstract

Cfr is a radical S-adenosylmethionine (RS) methylase that appends methyl groups to C8 and C2 of adenosine 2503 in 23S rRNA. Methylation of C8 confers resistance to several classes of antibiotics that bind in or near the peptidyltransferase center of the bacterial ribosome, including the synthetic antibiotic linezolid. The Cfr reaction requires the action of five conserved cysteines, three of which ligate a required [4Fe-4S] cluster cofactor. The two remaining cysteines play a more intricate role in the reaction; one (Cys338) becomes transiently methylated during catalysis. The function of the second (Cys105) has not been rigorously established; however, in the related RlmN reaction, it (Cys118) initiates resolution of a key protein-nucleic acid cross-linked intermediate by abstracting the proton from the carbon center (C2) undergoing methylation. We previously proposed that, unlike RlmN, Cfr would utilize a polyprotic base during resolution of the protein-nucleic acid cross-linked intermediate during C8 methylation and, like RlmN, use a monoprotic base during C2 methylation. We based this proposal on the fact that solvent hydrons could exchange into the product during C8 methylation, but not during C2 methylation. Herein, we show that Cys105 of Cfr has a function similar to that of Cys118 of RlmN while methylating C8 of A2503 and provide evidence for one molecule of water that is in close contact with it, which provides the exchangeable protons during catalysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。