Delayed embryonic development and impaired cell growth and survival in Actg1 null mice

Actg1 基因敲除小鼠胚胎发育延迟,细胞生长和存活受损

阅读:5
作者:Tina M Bunnell, James M Ervasti

Abstract

Actins are among the most highly expressed proteins in eukaryotes and play a central role in nearly all aspects of cell biology. While the intricate process of development undoubtedly requires a properly regulated actin cytoskeleton, little is known about the contributions of different actin isoforms during embryogenesis. Of the six actin isoforms, only the two cytoplasmic actins, beta(cyto)- and gamma(cyto)-actin, are ubiquitously expressed. We found that gamma(cyto)-actin null (Actg1(-/-)) mice were fully viable during embryonic development, but most died within 48 h of birth due to respiratory failure and cannibalization by the parents. While no morphogenetic defects were identified, Actg1(-/-) mice exhibited stunted growth during embryonic and postnatal development as well as delayed cardiac outflow tract formation that resolved by birth. Using primary mouse embryonic fibroblasts, we confirm that gamma(cyto)-actin is not required for cell migration. The Actg1(-/-) cells, however, exhibited growth impairment and reduced cell viability, defects which perhaps contribute to the stunted growth and developmental delays observed in Actg1(-/-) embryos. Since the total amount of actin protein was maintained in Actg1(-/-) cells, our data suggests a distinct requirement for gamma(cyto)-actin in cell growth and survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。