Landscape analysis of m6A modification reveals the dysfunction of bone metabolism in osteoporosis mice

m6A修饰景观分析揭示骨质疏松小鼠骨代谢功能障碍

阅读:6
作者:Lifeng Zheng, Chao Lan, Xinyue Gao, An Zhu, Yaoqing Chen, Jinluan Lin, Sunjie Yan, Ximei Shen

Abstract

Osteoporosis (OP) is a prevalent chronic bone metabolic disorder that affects the elderly population, leading to an increased susceptibility to bone fragility. Despite extensive research on the onset and progression of OP, the precise mechanisms underlying this condition remain elusive. The m6A modification, a prevalent form of chemical RNA modification, primarily regulates posttranscriptional processes, including RNA stability, splicing, and translation. Numerous studies have underscored the crucial functions of m6A regulators in OP. This study aimed to explore the relationship between OP and RNA m6A methylation, investigating its underlying mechanisms through comprehensive bioinformatic analysis and experimental validation. The mRNA sequencing (mRNA-seq) and methylated RNA immunoprecipitation sequencing (MeRIP-seq) were performed on control mice as well as ovariectomized mice to discover differentially expressed genes (DEGs) and m6A regulators in OP. The results revealed dysregulation of a majority of bone metabolism-related genes and m6A regulators in ovariectomized mice, indicating a closely linked relationship between them. Our research findings indicated that m6A modification is essential in regulating OP, offering potential insights for prevention and treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。