Integrating genetic and network analysis to characterize genes related to mouse weight

整合遗传和网络分析来表征与小鼠体重相关的基因

阅读:5
作者:Anatole Ghazalpour, Sudheer Doss, Bin Zhang, Susanna Wang, Christopher Plaisier, Ruth Castellanos, Alec Brozell, Eric E Schadt, Thomas A Drake, Aldons J Lusis, Steve Horvath

Abstract

Systems biology approaches that are based on the genetics of gene expression have been fruitful in identifying genetic regulatory loci related to complex traits. We use microarray and genetic marker data from an F2 mouse intercross to examine the large-scale organization of the gene co-expression network in liver, and annotate several gene modules in terms of 22 physiological traits. We identify chromosomal loci (referred to as module quantitative trait loci, mQTL) that perturb the modules and describe a novel approach that integrates network properties with genetic marker information to model gene/trait relationships. Specifically, using the mQTL and the intramodular connectivity of a body weight-related module, we describe which factors determine the relationship between gene expression profiles and weight. Our approach results in the identification of genetic targets that influence gene modules (pathways) that are related to the clinical phenotypes of interest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。