Biomimetic Mineralized Hydroxyapatite Nanofiber-Incorporated Methacrylated Gelatin Hydrogel with Improved Mechanical and Osteoinductive Performances for Bone Regeneration

仿生矿化羟基磷灰石纳米纤维掺入甲基丙烯酸酯明胶水凝胶具有改善的机械和骨诱导性能,可用于骨再生

阅读:3
作者:He Wang #, Bo Hu #, Hong Li, Ge Feng, Shengyuan Pan, Ziqi Chen, Bo Li, Jinlin Song

Conclusion

The biomimetic m-HANFs/GelMA composite hydrogel can provide a novel option for bone tissue engineering in the future; however, it needs further investigations to optimize the proportions of m-HANFs and GelMA for improving the bone repair effect.

Methods

In this work, hydroxyapatite nanofibers (HANFs) were prepared and mineralized in a simulated body fluid to make their components and structure more similar to those of natural bone apatite, and then different amounts of mineralized HANFs (m-HANFs) were incorporated into the GelMA hydrogel to form m-HANFs/GelMA composite hydrogels. The physicochemical properties, biocompatibility and bone regenerative ability of m-HANFs/GelMA were determined in vitro and in vivo.

Purpose

Methacrylic anhydride-modified gelatin (GelMA) hydrogels exhibit many beneficial biological features and are widely studied for bone tissue regeneration. However, deficiencies in the mechanical strength, osteogenic factors and mineral ions limit their application in bone defect regeneration. Incorporation of inorganic fillers into GelMA to improve its mechanical properties and bone regenerative ability has been one of the research hotspots.

Results

The results indicated that m-HANFs with high aspect ratio presented rough and porous surfaces coated with bone-like apatite crystals. The incorporation of biomimetic m-HANFs improved the biocompatibility, mechanical, swelling, degradation and bone regenerative performances of GelMA. However, the improvement in the performance of the composite hydrogel did not continuously increase as the amount of added m-HANFs increased, and the 15m-HANFs/GelMA group exhibited the best swelling and degradation performances and the best bone repair effect in vivo among all the groups.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。