Formulation, characterization and tissue distribution of a novel pH-sensitive long-circulating liposome-based theranostic suitable for molecular imaging and drug delivery

适用于分子成像和药物输送的新型 pH 敏感长循环脂质体治疗诊断剂的配方、特性和组织分布

阅读:8
作者:Yin Duan, Lihui Wei, Julia Petryk, Terrence D Ruddy

Conclusion

4%PEG-HS-CHEM showed promising results in pH-sensitivity, serum stability, tissue uptake and kinetics and is a novel liposome formulation for multifunctional theranostic applications.

Methods

Liposomal particles were generated using hydrogenated soy (HS) phosphatidylcholine, cholesteryl hemisuccinate (CHEM), polyethylene glycol (PEG) and diethylenetriaminepentaacetic acid-modified phosphatidylethanolamine with film hydration and extrusion methods. The physicochemical properties of the different formulas were characterized. pH-sensitivity was evaluated through monitoring release of encapsulated calcein. Stability of the radiolabeled liposomes was assessed in vitro through incubation with human serum. The best formula was selected and injected into healthy rats to assess tissue uptake and pharmacokinetics.

Purpose

When designing liposome formulas for treatment and diagnostic purposes, two of the most common challenges are 1) the lack of a specific release mechanism for the encapsulated contents and 2) a short circulation time due to poor resistance to biological fluids. This study aimed to create a liposome formula with prolonged in vivo longevity and pH-sensitivity for cytoplasmic drug delivery. Materials and

Results

Liposomal particles were between 88 and 102 nm in diameter and negatively charged on the surface. Radiolabeling of all formulas with indium-111 was successful with good efficiency. 1%PEG-HS-CHEM not only responded to acidification very quickly but also underwent heavy degradation with serum. The 4%PEG-HS-CHEM, which exhibited both comparatively good pH-sensitivity (up to 20% release) and satisfactory stability (stability >70% after 24 h), was considered the best candidate for in vivo evaluation. Tissue distribution of 4%PEG-HS-CHEM was comparable to that of 4%PEG-HS-Chol, a long-circulating but pH-insensitive control, showing major accumulation in liver, spleen, intestine and kidneys. Analysis of blood clearance showed favorable half-life values: 0.6 and 14 h in fast and slow clearance phases, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。