Wastewater-Based Estimation of the Effective Reproductive Number of SARS-CoV-2

基于废水的 SARS-CoV-2 有效繁殖数估算

阅读:6
作者:Jana S Huisman, Jérémie Scire, Lea Caduff, Xavier Fernandez-Cassi, Pravin Ganesanandamoorthy, Anina Kull, Andreas Scheidegger, Elyse Stachler, Alexandria B Boehm, Bridgette Hughes, Alisha Knudson, Aaron Topol, Krista R Wigginton, Marlene K Wolfe, Tamar Kohn, Christoph Ort, Tanja Stadler, Timothy R J

Background

The effective reproductive number, ReRe<math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math>, is a critical indicator to monitor disease dynamics, inform regional and national policies, and estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To date, ReRe<math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math> estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths. These estimates are temporarily biased when clinical testing or reporting strategies change. Objectives: We show that the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater can be used to estimate ReRe<math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math> in near real time, independent of clinical data and without the associated biases.

Discussion

To our knowledge, this is the first time ReRe<math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math> has been estimated from wastewater. This method provides a low-cost, rapid, and independent way to inform SARS-CoV-2 monitoring during the ongoing pandemic and is applicable to future wastewater-based epidemiology targeting other pathogens. https://doi.org/10.1289/EHP10050.

Methods

We collected longitudinal measurements of SARS-CoV-2 RNA in wastewater in Zurich, Switzerland, and San Jose, California, USA. We combined this data with information on the temporal dynamics of shedding (the shedding load distribution) to estimate a time series proportional to the daily COVID-19 infection incidence. We estimated a wastewater-based ReRe<math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math> from this incidence.

Results

The method to estimate ReRe<math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math> from wastewater worked robustly on data from two different countries and two wastewater matrices. The resulting estimates were as similar to the ReRe<math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math> estimates from case report data as ReRe<math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math> estimates based on observed cases, hospitalizations, and deaths are among each other. We further provide details on the effect of sampling frequency and the shedding load distribution on the ability to infer ReRe<math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></mrow></math>.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。