Innate immune responses to paraquat exposure in a Drosophila model of Parkinson's disease

帕金森病果蝇模型对百草枯暴露的先天免疫反应

阅读:6
作者:Urmila Maitra, Michael N Scaglione, Stanislava Chtarbanova, Janis M O'Donnell

Abstract

Parkinson's disease (PD) is a progressive, neurodegenerative movement disorder characterized by the loss of dopaminergic (DA) neurons. Limited understanding of the early molecular pathways associated with the demise of DA neurons, including those of inflammatory exacerbation of neurodegeneration, is a major impediment to therapeutic development. Recent studies have implicated gene-environment interactions in PD susceptibility. We used transcriptomic profiling in a Drosophila PD model in response to paraquat (PQ)-induced oxidative stress to identify pre-symptomatic signatures of impending neuron dysfunction. Our RNAseq data analysis revealed extensive regulation of innate immune response genes following PQ ingestion. We found that PQ exposure leads to the activation of the NF-κB transcription factor, Relish, and the stress signaling factor JNK, encoded by the gene basket in Drosophila. Relish knockdown in the dopaminergic neurons confers PQ resistance and rescues mobility defects and DA neuron loss. Furthermore, PQ-induced toxicity is mediated through the immune deficiency signaling pathway. Surprisingly, the expression of Relish-dependent anti-microbial peptide (AMPs) genes is suppressed upon PQ exposure causing increased sensitivity to Gram-negative bacterial infection. This work provides a novel link between PQ exposure and innate immune system modulation underlying environmental toxin-induced neurodegeneration, thereby underscoring the role of the innate immune system in PD pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。