Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production

肥胖中的血管生成增强以及通过脂肪细胞 VEGF 和 ANGPTL4 的产生对 PPARgamma 激活剂的反应

阅读:10
作者:Olga Gealekman, Alison Burkart, My Chouinard, Sarah M Nicoloro, Juerg Straubhaar, Silvia Corvera

Abstract

PPARgamma activators such as rosiglitazone (RSG) stimulate adipocyte differentiation and increase subcutaneous adipose tissue mass. However, in addition to preadipocyte differentiation, adipose tissue expansion requires neovascularization to support increased adipocyte numbers. Paradoxically, endothelial cell growth and differentiation is potently inhibited by RSG in vitro, raising the question of how this drug can induce an increase in adipose tissue mass while inhibiting angiogenesis. We find that adipose tissue from mice treated with RSG have increased capillary density. To determine whether adipose tissue angiogenesis was stimulated by RSG, we developed a novel assay to study angiogenic sprout formation ex vivo. Angiogenic sprout formation from equally sized adipose tissue fragments, but not from aorta rings, was greatly increased by obesity and by TZD treatment in vivo. To define the mechanism involved in RSG-stimulated angiogenesis in adipose tissue, the expression of proangiogenic factors by adipocytes was examined. Expression of VEGFA and VEGFB, as well as of the angiopoietin-like factor-4 (ANGPTL4), was stimulated by in vivo treatment with RSG. To define the potential role of these factors, we analyzed their effects on endothelial cell growth and differentiation in vitro. We found that ANGPTL4 stimulates endothelial cell growth and tubule formation, albeit more weakly than VEGF. However, ANGPTL4 mitigates the growth inhibitory actions of RSG on endothelial cells in the presence or absence of VEGF. Thus, the interplay between VEGF and ANGPTL4 could lead to a net expansion of the adipose tissue capillary network, required for adipose tissue growth, in response to PPARgamma activators.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。