TET1 regulates responses to house dust mite by altering chromatin accessibility, DNA methylation, and gene expression in airway epithelial cells

TET1 通过改变呼吸道上皮细胞中的染色质可及性、DNA 甲基化和基因表达来调节对屋尘螨的反应

阅读:8
作者:Anthony P Brown, Sreeja Parameswaran, Lucy Cai, Sweeney Elston, Chi Pham, Artem Barski, Matthew T Weirauch, Hong Ji

Background

Previous studies have identified TET1 as a potential key regulator of genes linked to asthma. TET1 has been shown to transcriptionally respond to house dust mite extract, an allergen known to directly cause allergic asthma development, and regulate the expression of genes involved in asthma. How TET1 regulates expression of these genes, however, is unknown. TET1 is a DNA demethylase; therefore, most prior research on TET1-based gene regulation has focused on how TET1 affects methylation. However, TET1 can also interact directly with transcription factors and histone modifiers to regulate gene expression. Understanding how TET1 regulates expression to contribute to allergic responses and asthma development thus requires a comprehensive approach. To this end, we measured mRNA expression, DNA methylation, chromatin accessibility and histone modifications in control and TET1 knockdown human bronchial epithelial cells treated or untreated with house dust mite extract.

Conclusions

TET1 regulates gene expression through different mechanisms (DNA methylation and chromatin accessibility) in different parts of the genome in the airway epithelial cells, which mediates inflammatory responses to allergen. Collectively, our data suggest novel molecular mechanisms through which TET1 regulates critical pathways following allergen challenges and contributes to the development of asthma.

Results

Throughout our analyses, we detected strong similarities between the effects of TET1 knockdown alone and the effects of HDM treatment alone. One especially striking pattern was that both TET1 knockdown and HDM treatment generally led to decreased chromatin accessibility at largely the same genomic loci. Transcription factor enrichment analyses indicated that altered chromatin accessibility following the loss of TET1 may affect, or be affected by, CTCF and CEBP binding. TET1 loss also led to changes in DNA methylation, but these changes were generally in regions where accessibility was not changing. Conclusions: TET1 regulates gene expression through different mechanisms (DNA methylation and chromatin accessibility) in different parts of the genome in the airway epithelial cells, which mediates inflammatory responses to allergen. Collectively, our data suggest novel molecular mechanisms through which TET1 regulates critical pathways following allergen challenges and contributes to the development of asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。